
  

Flow-based benchmark data sets for intrusion detection 
Markus Ring1, Sarah Wunderlich1, Dominik Grüdl1, Dieter Landes1, Andreas Hotho2 
1Coburg University of Applied Sciences, Coburg, Germany 
2University of Würzburg, Würzburg, Germany 
markus.ring@hs-coburg.de 
sarah.wunderlich@hs-coburg.de 
dominik.gruedl@stud.hs-coburg.de 
dieter.landes@hs-coburg.de 
hotho@informatik.uni-wuerzburg.de 
 
 
Abstract: Anomaly based intrusion detection systems suffer from a lack of appropriate evaluation data sets. 
Often, existing data sets may not be published due to privacy concerns or do not reflect actual and current 
attack scenarios. In order to overcome these problems, we identify characteristics of good data sets and 
develop an appropriate concept for the generation of labelled flow-based data sets that satisfy these criteria. 
The concept is implemented based on OpenStack, thus demonstrating the suitability of virtual environments. 
Virtual environments offer advantages compared to static data sets by easily creating up-to-date data sets 
with recent trends in user behaviour and new attack scenarios.  
In particular, we emulate a small business environment which includes several clients and typical servers. 
Network traffic is generated by scripts which emulate typical user activities like surfing the web, writing emails, 
or printing documents on the clients. These scripts follow some guidelines to ensure that the user behaviour is 
as realistic as possible, also with respect to working hours and lunch breaks. The generated network traffic is 
recorded in unidirectional NetFlow format. 
For generating malicious traffic, attacks like Denial of Service, Brute Force, and Port Scans are executed within 
the network. Since origins, targets, and timestamps of executed attacks are known, labelling of recorded 
NetFlow data is easily possible. For inclusion of actual traffic, which has its origin outside the OpenStack 
environment, an external server with two services is deployed. This server has a public IP address and is 
exposed to real and up-to-date attacks from the internet.  
We captured approximately 32 million flows over a period of four weeks and categorized them into five 
classes. Further, the chronological sequence of the flows is analysed and the distribution of normal and 
malicious traffic is discussed in detail. The main contribution of this paper is the demonstration of a novel 
approach to use OpenStack as a basis for generating realistic data sets that can be used for the evaluation of 
network intrusion detection systems.  
 
Keywords: data set generation, intrusion detection, anomaly detection, netflow, openstack  

1. Introduction  

Network-compatible devices permeate nearly all areas of modern society. This does not only hold for the 
increasing number of the devices due to the internet of things but also for the sensible data stored in every 
company’s network. Simultaneously, the number of cyber threats against company data and critical 
infrastructures is increasing. However, company data are a valuable asset which must be protected against loss 
and manipulation by unauthorized parties (Landes et al., 2013). Further, critical infrastructures are essential 
for day-to-day operations of economy and government (Ralston et al., 2007). Consequently, it is necessary to 
protect them against cyber threats. Various security mechanisms like network intrusion detection systems 
(NIDS), security information and event management systems (SIEM), or firewalls are in use for protecting 
company networks and critical infrastructures against criminal activities (Ring et al., 2017a).  
In this work, we focus on anomaly-based NIDS. Anomaly-based systems try to model normal network 
behaviour based on representative training data. If incoming network traffic differs significantly from learnt 
behaviour, it is marked as malicious. As a result, anomaly-based NIDS are able to detect novel and obfuscated 
attacks (Otto et al., 2016). However, realistic and labelled data sets are rare and often do not reflect current 
trends (Shiravi et al., 2012).  
In order to overcome these problems, we propose an approach for creating labelled data sets for training and 
evaluating anomaly-based NIDS. This approach builds upon the software OpenStack. We emulate a small 
business environment in OpenStack and capture the generated network traffic of the virtual machines in 



 
 

unidirectional NetFlow format. Network traffic is recorded in flow-based format instead of packet-based since 
this bypasses the problem of encrypted connections, leads to less privacy concerns and reduces the amount of 
data to be analysed. Anomaly-based systems are better at finding similarities than finding outliers (Sommer 
and Paxson, 2011). Therefore, normal and malicious user activities are considered when creating the data sets. 
Normal user behaviour is generated by executing Python scripts on the clients which follow some self-defined 
guidelines. Malicious network traffic is captured by explicitly executing attacks within the OpenStack 
environment and by capturing the traffic of a server which is exposed to real and up-to-date attacks from the 
internet.  
The main contribution of this paper is two-fold: first, we demonstrate the suitability of OpenStack as a tool to 
generate labelled and realistic benchmark data sets for NIDS, and second, the exemplarily generated data set 
CIDDS-001 (Coburg Intrusion Detection Data Sets) (Ring et al., 2017b) as well as the Python scripts (Ring et al., 
2017c) are made publicly available for use by other researches.  
 
The rest of the paper is organized as follows: Related work on network-based data sets is discussed in Section 
2. Section 3 describes our concept for the generation of labelled flow-based data sets using OpenStack. In 
Section 4, we analyse the created data set in more detail. The last section summarizes the paper and provides 
an outlook for future work.   

2. Related work  

This section reviews related work on available data sets for intrusion and insider threat detection. Intrusion 
detection data sets can be categorized into network-based, host-based and application-based. Since the 
proposed approach is network-based, the following review does not consider data sets from the other two 
types. We subdivide network-based intrusion detection data sets further into packet-based (category I) and 
flow-based (category II). 
 
Packet-based data sets usually contain packet-headers and payloads. The well-known DARPA98 and DARPA99 
data sets from the MIT Lincoln Laboratory are representatives of this category. Both data sets capture traffic 
from a simulated environment. The KDD CUP 99 data set is a modified version of DARPA98 and one of the 
most widely used data sets for NIDS evaluation. However, weaknesses of the KDD CUP 99 data set include 
amongst other the high number of duplicates. Tavallaee et al. (2009) proposed the NSL-KDD data set which is 
based on KDD CUP 99 and tries to eliminate identified weaknesses. However, the mentioned data sets are 
based on data which was captured more than 17 years ago. Consequently, it is questionable if they contain 
network traffic which reflects up-to-date scenarios of both, malicious and normal traffic.  
The MAWI repository provides up-to-date packet-based data sets. Those data sets are created by capturing the 
network traffic of an internet backbone and are labelled by combining various anomaly detectors (Fontugne et 
al., 2010). Despite their topicality, it is questionable if these data sets are suitable for training and evaluation of 
anomaly-based NIDS, since the characteristics of network traffic from internet backbones differs from the one 
in company networks. 
Vasilomanolakis et al. (2015) published a packet-based data set generator (ID2T). This generator uses real 
input data and mixes them with attacks. Attacks are inserted either by script-based attack generation or by 
pcap modification.  
 
Data sets from category II contain only aggregated information about the connections within the network. 
Sperotto et al. (2009) contributed one of the first flow-based data sets. The authors collected flow-based data 
from a honeypot with several services and analysed the log files to label the corresponding flows. However, 
nearly all of the 14 million flows are malicious since real background traffic is missing.  
The CTU 13 Malware data set (García et al., 2014) is another representative of this category. It contains normal 
traffic and traffic from different malware scenarios. Labelling of malicious traffic is based on the IP addresses 
used by the botnets. Shiravi et al. (2012) proposed a systematic approach to generate labelled flow-based data 
sets for IDS. The authors describe various profiles which describe normal user activities as well as attack 
scenarios. These profiles can be combined into new data sets. The data sets published by (Shiravi et al., 2012) 
and (García et al., 2014) contain bidirectional flows while we aim at using unidirectional flows. Converting 
bidirectional into unidirectional flows might be viable, but would require some effort for re-labelling. 
Nevertheless, we would still be limited to a fixed number and kind of attacks within these data sets. 
Wheelus et al. (2014) and Zuech et al. (2015) proposed flow-based data sets. The SANTA data set of (Wheelus 
et al., 2014) contains real traffic and different attack scenarios. Labelling of the SANTA data set was done by 



 
 

manual analysis and heuristics. Zuech et al. (2015) present a data set for IDS evaluation called IRSC. The 
authors collected network flows as well as full packets and spent much effort for correct labelling. So far, 
however, neither of the two data sets is publicly available.  
 
It may be concluded that evaluation of NIDS is challenging due to the lack of publicly available data sets. Data 
sets that are discussed in literature are often outdated or not publicly available. As a countermeasure, we 
propose an approach to generate flow-based data sets similar to (Shiravi et al., 2012). In contrast to (Shiravi et 
al., 2012), we also capture real and up-to-date network traffic and threats by deploying a server in the 
internet.  Further, our emulated small business environment includes additional services like network printers 
or file synchronization servers and we use a different labelling approach which provides additional information 
about attacks and normal user behaviour.  

3. Data set generation  

This section introduces our approach for generation of labelled flow-based data sets. Section 3.1 discusses 
characteristics of good data sets. Section 3.2 provides an overview of our setting and presents the underlying 
ideas. Sections 3.3 and 3.4 explain the generation of normal and malicious traffic. Labelling and anonymization 
of the flow-based data are described in Sections 3.5 and 3.6. 

3.1 Requirements for good data sets 

When generating new data sets, it is important to note how good data sets should look like. Małowidzki et al. 
(2015) define the following features for good data sets:  
• contain recent data 
• be realistic 
• contain all typical attacks met in the wild 
• be labelled 
• be correct regarding operating cycles in enterprises (working hours) 
• should be flow-based 
We agree to all identified features. Further, we contend that a good data set should be comparable with real 
traffic and therefore has more normal than malicious traffic, since most of the traffic within a company is 
normal and only a small part is malicious.  

3.2 Overview of our data set generation approach 

The overall objective of this work is the generation of realistic labelled flow-based data sets conformant to the 
requirements discussed in Section 3.1. First of all, we claim that realistic flow-based network traffic should be 
recorded from actual networks instead of simulating network traffic by mathematical models. This assures the 
consideration of all parameters which could influence the timing behaviour of flow-based traffic such as 
response times of servers, CPU usage, or intermittent bottlenecks of the internet connection.  
The software platform OpenStack allows the creation of virtual networks and virtual machines. A virtual 
environment based on OpenStack allows us to meet most of the above mentioned features. A major 
advantage of generating data sets in a virtual environment is the possibility of regular adjustments of the 
behaviours of server or clients. This way, new attacks or new trends in user behaviour can be included easily to 
constantly generate recent and up-to-date data sets. Also, new ideas for improving the quality of the 
emulation can be easily integrated and tested. 
As another important advantage, full control over the environment including network devices like routers and 
switches is warranted. Thus, the richness of the data set, operating cycles as well as the ratio of normal to 
malicious behaviour may be set as necessary. Currently, we configure OpenStack to use neutron with 
OpenVSwitch and capture the whole network traffic within the virtual networks in unidirectional NetFlow 
format. We set up a small business environment with typical servers and some clients. Figure 1 shows an 
overview of our small business environment.  
 
 
 
 
 



 
 

 
Figure 1:  Overview of the simulated environment. 
 
The router within the OpenStack environment connects four subnets with each other and forwards traffic to 
the internet. The four subnets reflect the organizational structure of our virtual company. In particular, the 
Management, Office, and Developer departments have their own subnets (/24). The fourth subnet 
(192.168.100.0/24) contains four internal servers: mail, web, backup and file server. An external server 
provides two additional services via the internet: a file synchronization service (Seafile) and a public 
webserver.  
Randomized and parameterized python scripts emulate a variety of network activities on the clients and can 
be adopted to specific scenarios. The traffic caused by these scripts is recorded at the router within the 
OpenStack environment. Python scripts emulate typical user activities following some guidelines described 
below in Section 3.3. For the generation of malicious traffic, different types of attacks are executed within the 
virtual network (see Section 3.4). To make the generated data even more realistic, we also record the network 
traffic of our external server at its network card and merge it into the other traffic. The external server offers 
two services which are correctly used by the clients, but is simultaneously exposed to real and up-to-date 



 
 

attacks from the internet. Other than a honeypot, this approach enables recording both normal and malicious 
traffic at the external server. 
Overall, the whole environment has five servers, three printers, four windows clients and fifteen Linux clients. 
The Developer subnet exclusively contains Linux clients, the Office subnet encompasses only Windows clients 
while the Management subnet is a mix of both.  

3.3 Generation of normal data 

Since we emulate normal user behaviour through scripts on the clients, we define two guidelines for 
generation of realistic flow-based network traffic. The first guideline focuses on the realistic emulation of user 
behaviour whereas the second guideline takes the heterogeneity of operating systems into account. To fulfil 
these guidelines, the scripts consider the following features:  

1.) Runnable on different operating systems  
2.) Consider typical computerized activities of employees  
3.) Consider different tasks and working methods of employees 
4.) No periodic repetition of user activities 
5.) Consider typical working hours and breaks 

 
The first feature is met by using the platform independent language Python for writing the user behaviour 
scripts.  
Employees have a wide range of activities during their daily work like writing emails, creating documents and 
presentations, browsing (private or business searches), printing, sharing files and so on. For emulating such 
activities with respect to potential different characteristics of different employees, each client has its individual 
configuration file. The configuration file controls activities and their frequency for each client. Thus, different 
user profiles may be assigned to different clients. For transferring files and printing documents, it is important 
to ensure that the corresponding files vary in terms of types and sizes. Further, when sending emails, the 
number of attachments should change.  
Realistic user behaviour cannot be characterized by repeating a list of activities periodically. Instead, the 
temporal sequence of user activities should be randomized and the kind of activities should vary. Still, activities 
should not be totally random and follow a probability distribution which is based on typical working hours.  
Typically, employees are not permanently performing tasks which cause network traffic. It is important to 
consider meetings, offline work or coffee breaks (see feature 5 above). Scripts should emphasize working 
hours and stop activities in breaks and in the evening.  
 
Considering these requirements lead to data sets that are as realistic as possible, even though they do not 
reflect perfect user behaviour. Since the configuration file is modular, new restrictions and ideas may be 
integrated easily. We could even try to learn the parameters for the individual configuration files from real 
settings to get better emulated traffic. 

3.4 Generation of malicious traffic  

A comprehensive IDS data set consists of normal as well as malicious network traffic. Normal network traffic is 
generated by Python scripts as described above. The generation of malicious network traffic is based on a two-
pronged solution.  
On the one hand, two internal clients perform insider attacks (Ping-Scans, Port-Scans, Brute-Force and Denial 
of Service attacks) using Linux tools like nmap and various Python scripts. The list of attacks can be easily 
extended. Further, the attacker computers (see Figure 1) attack the external server with Port-Scans and Brute-
Force attacks. All these attacks can be easily labelled for our dataset. On the other hand, the external server is 
directly accessible from the internet and consequently exposed to actual and up-to-date attacks from the web 
which are not initiated by ourselves. Labelling of this traffic is more difficult. 

3.5 Labelling   

For evaluation of NIDS, a fully labelled data set is indispensable. Therefore, we perform a four-stage labelling 
process. The first label attribute is called class and categorizes flows in five categories: normal, attacker, victim 
suspicious and unknown. The second label attribute is called attackType and provides the type of attack, if the 
label attribute class contains the value attacker or victim. A third label attribute called attackID assigns a 



 
 

unique ID to all flows that belong to the same attack. The fourth label attribute is called attackDescription and 
gives a more detailed explanation of the attack. 
 
We use different labelling processes for the captured network traffic within the OpenStack environment and 
the external server. Network traffic captured at the OpenStack router can easily be labelled. Since origins, 
targets, and timestamps of executed attacks are known, attack traffic can be easily identified and assigned 
with the corresponding labels (attacker or victim). The remaining traffic is labelled as normal. 
Labelling traffic of the external server is more time-consuming. All clients from the OpenStack environment 
communicate with the same public IP address to the external server. This traffic can be labelled as normal 
traffic. Further, we have control over some other machines that are directly connected to the internet (see 
attacker in Figure 1). For these computers, we also know the IP addresses and only exploit attacks to the 
external server. Hence we know the origins, target and timestamps of these attacks. Consequently, we are 
able to label the corresponding flows with attacker and victim. However, we are not able to determine 
unequivocal labels to the other flows. Therefore, we use the following two rules. (1) All requests on port 80 
and 443 are labelled as unknown, since we do not know if requests are normal customer visits or attacks. (2) 
All other requested ports on the external server are labelled as suspicious, since no other ports are offered for 
public users.  

3.6 Anonymization  

For privacy reasons, all public IP addresses are anonymized according to the following approach: the public IP 
address of OpenStack is replaced with “OPENSTACK_NET”, the IP address of the DNS server is replaced with 
“DNS” and the IP address of the external server is replaced with “EXT_SERVER”. IP addresses of the attackers 
are replaced by “ATTACKER1”, “ATTACKER2” and “ATTACKER3”.  
For all other public IP addresses, the first three bytes of each IP address are replaced with a randomly 
generated number. The anonymization process ensures that the same IP address is always mapped to the 
same generated number. This allows anonymization of public IP addresses while preserving information about 
subnets. For example, possible transformations could look like:  
- “8.102.3.251” to “4711_251” 
- “8.102.3.233” to “4711_233”  
- “6.204.34.23” to “2342_23”  
- “201.133.175.87” to “9721_87” 

4. Analysis of the generated data  

This section analyses the captured network traffic of the scenario described in Section 3. The main 
characteristics of the CIDDS-001 data set are provided in Section 4.1. Section 4.2 and Section 4.3 describe the 
OpenStack and ExternalServer related traffic in more detail.  

4.1 Overview 

Proper evaluation of the resulting data set requires a deeper analysis of the captured flows. The network 
traffic was captured over a period of four weeks. Table 1 gives an overview regarding the sources of the flows. 
 
Table 1: Main characteristics of the CIDDS-001 data set. 

 OpenStack ExternalServer Overall 

Number of flows 31287934 671241 31959175 

Number of exploited attacks  70 22 92 

 
The resulting data set consists of two parts: OpenStack and ExternalServer. Table 1 shows the number of flows 
and exploited attacks for each part while the last column contains the sum of both. As one can easily see, the 
OpenStack environment generates the main portion of traffic. Nearly 32 million flows were captured from 
which around 31 million flows were captured in the OpenStack environment. Overall, we exploited 92 attacks 
within the four weeks.  
Each flow within the data set contains the typical NetFlow attributes, namely: Source IP Address, Source Port, 
Destination IP Address, Destination Port, Proto, Date first seen, Duration, Bytes, Packets, Flows, and TCP-Flags. 
The labelling process (see Section 3.5) adds four more attributes to each flow: class, attackType, 
attackDescription and attackID.  



 
 

4.2 OpenStack 

In this section, we analyse the in OpenStack captured flow-based network traffic in more detail.  
 
Table 2: Class distribution of the flow-based network traffic captured in OpenStack. 

Number of flows 31287934 (100.0%)  

   Number of normal flows 28051907 (89.66%)  

   Number of attacker flows 1656605 (05.29%) 

   Number of victim flows 1579422 (05.05%)  

   Number of suspicious flows 0 (00.00%) 

   Number of unknown flows 0 (00.00%) 

 
 
 
Table 2 shows the distribution of class labels in the flows captured in the OpenStack environment. The first 
column indicates the measured parameter whereas the second column contains the number of flows and their 
proportional percentage (in brackets). Over four weeks, about 31 million flows were captured most of which 
are caused by normal user behaviour. Since the exact timestamps of the executed attacks are known, labelling 
each flow corresponding to its meaning is easily possible. Consequently, the number of suspicious and 
unknown flows is zero.  
 

 
Figure 2: Temporal sequence of the captured traffic at the OpenStack router. The y-axis counts the flows per 
hour and each week is displayed as a line of different colour and structure. 
 
Figure 2 shows the temporal sequence of captured network traffic. Each line represents a week while the y-
axis indicates the number of flows per hour. Typical working hours can be easily recognized in Figure 2. 
Considering Monday, we can observe an increasing number of flows at 6:00, a small decrease around lunch 
time (12:00) and an increase one hour later. Between 16:00 and 18:00, when most employees leave from 
work, the amount of network flows decreases. Further, we can identify the typical working days from Monday 
to Friday with much more traffic than on Saturdays and Sundays, which entails a smaller extent of daily 
fluctuations of the flows. The nightly backup of the servers causes only a small number of flows which is not 
recognizable in Figure 2. In non-working hours, we observe an equal distribution of the flows which is caused 
by default requests, network drives and Seafile synchronizations. The peaks in week2 for Thursday and Friday 
are caused by DOS attacks. Further, we can observe a network failure in week2 at Wednesday around 12:00.  



 
 

4.3 ExternalServer data 

Besides OpenStack, the ExternalServer is used as a second source for flow-based traffic. As already mentioned, 
the server is deployed on the internet and is hence open to everyday exploits. Consequently, the labels are 
more diverse in comparison. 
Table 3 shows the label distribution of the flows. Again, the first column indicates the measured parameter 
whereas the second column contains the number of flows and their proportional percentage (in brackets). We 
captured over 0.6 million flows within four weeks. OpenStack clients generated nearly one fifth of the flows. 
Attacks exploited by us from the internet contribute over three percent of the flows. Since a publicly available 
webserver is deployed on the external server, the corresponding traffic (Port 80 and 443) could be normal 
customer requests or attacks. This traffic is labelled as unknown and causes about 11 percent of the traffic. The 
remaining traffic, which is nearly two thirds of the whole traffic, is labelled as suspicious.  
 
Table 3: Class distribution of the flow-based network traffic captured at the external server. 

Number of flows 671241 (100.0%)  

   Number of normal flows 134240 (20.00%)  

   Number of attacker flows 12260 (01.83%)  

   Number of victim flows 8907 (01.32%) 

   Number of suspicious flows 437911 (65.24%) 

   Number of unknown flows 77923 (11.61%) 

 
Figure 3 shows the temporal sequence of the flows at the external server.  
 

 
Figure 3: Temporal sequence of the captured traffic at the external server. The y-axis counts the flows per 
hour and each week is represented by a line of different colour and structure.  
 
The temporal sequence of captured traffic at the external server differs significantly from the traffic of the 
OpenStack network. First of all, we cannot observe an increasing amount of traffic during the working hours, 
since two thirds of the traffic are suspicious traffic from the web. Most of the peeks in Figure 3 represent 
scanning attacks executed by ourselves. Further, we take a deeper look at the traffic which is labelled as 
suspicious in Table 4.   
 
 



 
 

Table 4: Deeper investigation of suspicious flows. 

Number of suspicious flows 437911 (100.0%)  

   Number of flows to Port 22 (ssh) 337427 (77.05%)  

   Number of flows to Port 23 (telnet) 38050 (08.89%) 

   Number of flows from Port 80 634 (0.14%) 

   Number of flows to Port 8000 (Seafile) 1462 (0.33%) 

   Number of remaining flows 60608 (13.84%) 

 
Over three quarters of the traffic is directed to port 22 and represents SSH login attempts not initiated by our 
clients. Requests to port 23 (telnet) contribute further 9 percent of the traffic. About 1500 flows tried to access 
our Seafile service. Further, we detected a port scan from origin port 80, which also causes 0.14 percent of the 
traffic.   

5. Summary and Future Work  

Anomaly-based network intrusion detection systems (NIDS) are used to protect company data and critical 
infrastructures against loss and manipulation by unauthorized parties. In this paper, we proposed an approach 
for the generation of labelled flow-based data sets for training and evaluating NIDS. We used the OpenStack 
software platform to set up a small business environment and recorded the network traffic in unidirectional 
NetFlow format. Python scripts running on the clients for generating normal network traffic. These scripts 
underlie some guidelines to ensure as realistic user behaviour as possible. Malicious traffic is added by 
explicitly executing attacks within the network. Network traffic that originates outside the OpenStack 
environment is added by an external server. This external server offers two services and is exposed to real and 
up-to-date attacks from the internet. The resulting data set is analysed in more detail and significant 
characteristics are highlighted in graphical views.  
 
In the future, we want to extend our small business environment. A repository server should be integrated in 
the environment and additional activities should enhance client scripts e.g. by using Skype. Further, we want 
to learn the distribution of user activities from real network traffic for even more realistic parameterization of 
our scripts which control the user behaviour. Additionally, we want to exploit more sophisticated attack 
scenarios within our OpenStack environment.  
 

Acknowledgements  

This work is funded by the Bavarian Ministry for Economic affairs through the WISENT project (grant no. IUK 
452/002). 
 

References  
Fontugne, R., Borgnat, P., Abry, P., and Fukuda, K. (2010) “MAWILab: combining diverse anomaly detectors for 
automated anomaly labeling and performance benchmarking”, Proc. of the 6th Int. Conf. on Emerging 
Networking Experiments and Technology (Co-Next), ACM, pp 8:1-8:12. 
García, S., Grill, M., Stiborek, J., & Zunino, A. (2014) "An Empirical Comparison of Botnet Detection Methods", 
Computers & Security, Vol. 45, pp 100-123. 
Landes, D., Otto, F., Schumann, S., and Schlottke, F. (2013), „Identifying Suspicious Activities in Company 
Networks Through Data Mining and Visualization”, In Rausch, P., Sheta, A.F., and Ayesh, A. (eds.), Business 
Intelligence and Performance Management, Springer, London, pp 75-90. 
Małowidzki, M., Berezinski, P., and Mazur M. (2015) "Network Intrusion Detection: Half a Kingdom for a Good 
Dataset." Proc. of NATO STO SAS-139 Workshop, Portugal. 
Otto, F., Ring, M., Landes, D., and Hotho, A. (2016) “Creation of specific flow-based training data sets for usage 
behaviour classification”, Proc. of the 15th European Conference on Cyber Warfare and Security (ECCWS), 
ACPI, pp 437-440.  
Ralston, P.A., Graham, J.H., and Hieb, J.L. (2007). “Cyber security risk assessment for SCADA and DCS 
networks”, ISA transactions, Vol 46, No. 4, pp 583-594. 
Ring, M., Wunderlich, S., Grüdl, D., Landes, D., and Hotho, A. (2017a) „A Toolset for Intrusion and Insider 
Threat Detection“, In Palomares, I., Kalutarage, H., and Huang, Y. (eds.), Data Analytics and Decision Support 
for Cybersecurity: Trends, Methodologies and Applications, (to appear). 



 
 

Ring, M., Wunderlich, S., Grüdl, D., Landes, D., and Hotho, A. (2017b). „Coburg Intrusion Detection Data Sets 
(CIDDS)”. [online] Available at: https://www.hs-coburg.de/cidds. [Accessed 28 April 2017].  
Ring, M., Wunderlich, S., Grüdl, D., Landes, D., and Hotho, A. (2017c). “Generation Scripts CIDDS”. [online] 
Available at: https://github.com/markusring/CIDDS. [Accessed 28 April 2017].   
Shiravi, A., Shiravi, H., Tavallaee, M., and Ghorbani, A. A. (2012) "Toward developing a systematic approach to 
generate benchmark datasets for intrusion detection", Computers & Security, Vol. 31, No. 3, pp 357-374. 
Sommer, R. and Vern, P. (2010) "Outside the Closed World: On Using Machine Learning For Network Intrusion 
Detection", IEEE Symposium on Security and Privacy (SP), IEEE, pp 305-316.  
Sperotto, A., Sadre, R., Van Vliet, F., and Pras, A. (2009) "A Labeled Data Set For Flow-based Intrusion 
Detection", Proc. of the 9th IEEE Int. Workshop on IP Operations and Management (IPOM), Springer, pp 39-50.  
Tavallaee, M., Bagheri, E., Lu, W., and Ghorbani, A. (2009) “A detailed analysis of the KDD CUP 99 data set”, 
IEEE Symposium on Computational Intelligence for Security and Defence Applications, IEEE, pp 1-6.  
Wheelus, C., Khoshgoftaar, T. M., Zuech, R., and Najafabadi, M. M. (2014) “A Session Based Approach for 
Aggregating Network Traffic Data - The SANTA Dataset”, Proc. of the Int. Conf. on Bioinformatics and 
Bioengineering (BIBE), pp 369-378. 
Vasilomanolakis, E., Cordero, C. G., Milanov, N., and Mühlhäuser, M. (2016) “Towards the creation of 
synthetic, yet realistic, intrusion detection datasets”, Network Operations and Management Symposium 
(NOMS), IEEE, pp 1209-1214. 
Zuech, R., Khoshgoftaar, T. M., Seliya, N., Najafabadi, M. M., and Kemp, C. (2015) “A New Intrusion Detection 
Benchmarking System”, Proc. of the 28th Int. Florida Artificial Intelligence Research Society Conference, pp 252-
256. 

https://www.hs-coburg.de/cidds
https://github.com/markusring/CIDDS

